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Outline of Fan, Fan, L. and Yang (2024)

A motivating example

Group network inference with SIMPLE-RC

m Theoretical justifications

m Numerical studies
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A Networked World

m Individual nodes of a network (e.g. social media users or text
documents) may share similarities in the latent space

m Common to provide binary answers (i.e. Y/N) based on
community labeling given by clustering
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Network P-Values

m P-value tables routinely produced and utilized for linear and
logistic regression applications

m Important to provide a p-value table for network applications

m A simple, natural question is how to fest whether a pair of social
media users or text documents belong to the same community

m The recent work of SIMPLE (statistical inference on membership
profiles in large networks; fan, Fan, Han and L., 2022b) provided a first
attempt toward such a practical need

m Accommodates overlapping communities and degree
heterogeneity
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Continued

m In practice, we are often interested in investigating a group of
individuals as opposed to a pair of nodes

m The group of individuals might share similar (but not necessarily
identical) community membership profiles

m Real network applications may exhibit much more network
sparsity and much lower signal strength, while SIMPLE required
relatively strong assumptions on both network sparsity and
signal strength

m Important to enable network inference with flexibility and
theoretical guarantees
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A Motivating Example

Technology  Healthcare Financial Energy Communication
Technology 0.1246 0.0247 0.0000 0.0001  0.0000
Healthcare 0.0247 0.0658 0.0279 0.0337  0.0000
Financial 0.0000 0.0279 0.7726 0.0004  0.0000
Energy 0.0001 0.0337 0.0004 0.8033  0.0000
Communication  0.0000 0.0000 0.0000 0.0000  0.7220

m Stocks in S&P 500 list can have non-identical community
membership profiles even within the same sector of stock
market (due to complicated structures)

m Desired to test whether a group of individuals (network nodes)
might share similar (not necessarily identical) community

membership profiles
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An Interesting Phenomenon
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m Empirical null distributions of SIMPLE-RC test (to be introduced)
may deviate from limiting distributions under weak signals

m Choice of parameter Kj is crucial (though true K = 5)

m Any theoretical justifications under the lens of random matrix
theory?
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Questions of Interest

m How to design a tool for flexible group network inference with
precise p-values on testing whether a group of nodes might
share similar (not necessarily identical) community membership
profiles

m How to deal with the challenging case of sparse networks and
weak signals and accommodate popularly used network
models?

m How to develop a more general framework of asymptotic theory
on spiked eigenvectors and eigenvalues for large structured
random matrices powering group network inference with
non-sharp nulls and weak signals?
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Group Network Inference with SIMPLE-RC
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Model Setting

m Consider a network with n nodes {1,---, n} and adjacency matrix
X = (x;) e R™" representing connectivity structure of network
with x;; = 1 for link and 0 for no link (Bhattacharyya and Bickel, 2016; Abbe, 2017;
Le, Levina and Vershynin, 2018; Fan, Fan, Han and L., 2022b; )

Assume adjacency matrix can be written generally as

X=H+W

H = (hy) e R™" is deterministic mean matrix

W = (w;) e R™" is symmetric random noise matrix with
independent diagonal and upper diagonal entries satisfying
Ew;j = 0 and maxigj jep |Wj| < 1
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Continued

m Noise random matrix W known as generalized Wigner matrix
m Links x;'s independent Bernoulli random variables with means h;

m Assume network can be decomposed into K communities
Ci, -, Ck

m Each node i has community membership probability vector
TP = (71',‘(1 )7~~~,71','(K))T € RK with 7T,'(k) € [071], Zfﬂ 71',‘(/() = 1,
and
P{node / belongs to community Cy} = m;(k)

m Allow number of communities K to be slowly diverging (of order
(log n)€) and unknown
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Group Network Inference with Non-Sharp Nulls

m For any given group of nodes .# c {1,---, n}, our goal is to infer
whether they share similar (but not necessarily identical)
membership profiles (i.e. probability vectors) with quantified
uncertainty level from observed adjacency matrix X

m Interested in testing non-sharp null hypothesis

Ho : max |lm; —wj] < ein

versus alternative hypothesis

Ha: max A {(mim)" (7)) } > Cen

with Amin{-} denoting smallest eigenvalue and ¢, > ¢, two
positive sequences slowly converging to zero

Jinchi Lv. USC Marshall — 12/48



Continued

m Formulation of alternative hypothesis motivated by our
theoretical analyses

= Ho gives an upper bound on max; jo_z A2 {(m;, 7)) (71, 7))},
while H implies a lower bound on max; jc_» |7 — 7]

m To make problem more explicit, we first exploit mixed
membership model without degree heterogeneity by assuming
EX=H=6nPNn" (Airoldi, Blei, Fienberg and Xing, 2008)

m We further exploit degree-corrected mixed membership model
for degree heterogeneity assuming EX = H = ©MPN’ O (znang,

Levina and Zhu, 2014; Jin, Ke and Luo, 201 7)
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Mixed Membership Model

m For now focus on mixed membership model without degree
heterogeneity by assuming EX=H = onPn’ (Airoldi, Blei, Fienberg and
Xing, 2008)

m Scalar 0 > 0 (network sparsity parameter) allowed to converge to
Oasn— o

M= (mwq,-,7,)" e R™K is matrix of membership probability
vectors and P = (py) € RX*K is nonsingular matrix with py € [0,1]

m Including stochastic block model with non-overlapping
communities (when each 7r; has one nonzero component)
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Population and Empirical Eigenstructures

= Denote by H = VDV’ eigendecomposition of mean matrix

m D =diag{d,, -, dx} with |dj| > --- > |dk| > O is matrix of nonzero
eigenvalues in descending order in magnitude and
V = (vy,-,vk) e R™K is orthonormal matrix of corresponding
eigenvectors

= Denote by d;. -, d, eigenvalues of X and Vs, ---, V,, corresponding
eigenvectors

= Without loss of generality, assume |di| > -+ > |dj,| and denote by
V = (Vq,--,Vk) e R™K (consisting of top K empirical spiked
eigenvectors)

Jinchi Lv. USC Marshall — 15/48



SIMPLE-RC for A Pair of Nodes

= To motivate our method SIMPLE-RC, begin with case of
m = || = 2 (testing a pair of given network nodes {i, j})

m Let Koy be an integer with 1 < Ky < K, Vi, an n x Ko matrix formed
by first Ky columns of V, and Dy, a Ky x Kp principal minor of D
containing its first Ky diagonal entries

m A simple observation is that under mixed membership model, Hy
entails

1Dk, [Vio (1) = Vi, (D] < €10/ i Oma

with Omax = A1 (P)@ (ith and jth rows viewed as column vectors)
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Continued

m Another useful observation is that under mixed membership
model, H, entails

Do [Vio (1) = Vi, (D]l 2 C2nV/ Ak Ormin
with 0.,in = Ak (P)6, provided that

IDi, [V (1) = Vi, (D] 2 ¢ [DLV() - V(D]

for some constant ¢ > 0

m Under the above assumption, using only V, (instead of V) can
still capture a significant fraction of difference between 7; and =r;

m Important for achieving high power using SIMPLE-RC
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Continued

m Motivated by these observations, we suggest following ideal
SIMPLE-RC test statistic to assess membership profile
information for node pair {/,}

Ti(Ko) = [Vi, (i) —VKO(/)]T [X/',/'(Ko)]_1 [Vio (1) - Vi, ()]

with 1 < Ky < K some pre-determined number and VKO the nx Ky
matrix formed by first Ky columns of \;

m X;;(Ko) = cov[(e; - &) "WV, D, ] with e; € R” unit vector with ith
component 1
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Continued

m Reduces to original SIMPLE test statistic (Fan, Fan, Han and L., 20220) for
the case of sharp null (i.e. ¢y, = 0) and with choice of Ky = K (for
strong signals)

m Choice of parameter 1 < Ky < K for SIMPLE-RC plays a key role
in network inference under weak signals (one of major
distinctions from the work of SIMPLE)

s We can provide an estimate of covariance matrix X; ; and specify
choice of Ky with theoretical justifications (more details later)
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SIMPLE-RC for A Group of Nodes

m Now consider group testing for the case of diverging m = |.Z/|
and assume m € 2N (for simplicity)

= A natural idea would be to investigate test statistic max; 1.z Tj

m Yet doing so is rather challenging because of potentially high
correlations among all individual T's

m To deal with such a challenging issue, we suggest a random
coupling strategy for group network inference

m This gives rise to the name of our SIMPLE-RC method
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Continued

m Randomly pick pairs of nodes in group .# without replacement
until all nodes are coupled

m Denote by & set of resulting pairs of such random coupling

m Given random coupling set &2, formally define our SIMPLE-RC
test statistic T as

T= max Tj
{i,j}e?

m We show formally that under suitable centering and rescaling,
SIMPLE-RC test statistic T converges to a Gumbel distribution
under Hy (more details later including power analysis)
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SIMPLE-RC with Degree Heterogeneity

m We further investigate more general case with degree
heterogeneity

m Exploit degree-corrected mixed membership model for degree
heterogeneity assuming EX =H = @I'IPI'IT@ (zhang, Levina and zhu, 2014;
Jin, Ke and Luo, 2017)

m O =diag{6,-,0,} with 6, > 0 is degree heterogeneity matrix

m Also suggested another form of SIMPLE-RC test statistics .7}
and 7 (similar flavor but different form) and established parallel
asymptotic distributions as well as power analysis (exploiting
eigenvector ratio statistics)

m More details and comprehensive theory (ran, Fan, L. and Yang, 2024)
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What is the theory behind such a procedure?
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Theoretical Justifications
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Technical Conditions

= Condition 1:

(i) (Network sparsity) It holds that g > (log n)* with g = /né

(ii) (Spiked eigenvalues) It holds that |dy| > qloglog n for all
1<k<Ky

(iii) (Eigengap) There exists some constant ¢y > 0 such that

min |d ‘
1<k<Ky |dk+1 |

> 1+ ey,

where we do not require eigengaps for smaller eigenvalues
|dk| with Ko +1 <k < K

(iv) (Mean matrix) There exists some constant ¢; > 0 such that
max; je(n) hj < 1 -1 and maxiern) Ljerny hij > 51n9, and the
e|genvalues of P satisfy that 0 < Ak (P) <+~ < X\ (P) < Cfor
some large constant C >0
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Continued

Condition 1:

(v) (Covariance matrix) There exists some constant 0 < es < 1
such that all the eigenvalues of 6 Dy X ;(K;)Dg; are

between ¢, and &5 for all {i,j} ¢ .# and 1 < Kj < Ko

For fixed g9 and e, denote by K.y = Knax (N, €0, 62) < K the
largest Ky such that parts (ii), (iii), and (v) above hold

Parameter q is key to our technical study (giving typical size of
eigenvalues of noise random matrix W)

m Much weaker assumptions on network sparsity and signal
strength (i.e. signal-to-noise ratio)

Jinchi Lv. USC Marshall — 26/48



SIMPLE-RC for A Pair of Nodes

Theorem 1. Assume that some regularity conditions hold, Kj is a

random variable such that 1 < Ky < Kiax A Co almost surely for some
2

large constant Cp >0, and 1 < K « 1% |

q
L~ =S Vo togn " IV )2
Then test statistic T;;(Ko) satisfies that

(i) If c1n << [diA1(P)] 72, it holds that under null hypothesis Hp,

nlim sup [P{Tj(Ko) < x} - Fi(X)| =0,
0 xeR

where conditional on Ky, F, is chi-square distribution with Ky
degrees of freedom

(ii) If cop > [dK)\K(P)]‘%, it holds that under alternative hypothesis
Haa

,!LTOP{U(KO) > C} =1

for each arbitrarily large constant C >0
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Continued
m Establishes important extensions of recent results (ran, Fan, Han and L.,
2022a and 2022b)
m Considers hypothesis testing with non-sharp nulls
m Allows for slowly diverging number of communities K

m Relaxes lower bound on parameter g from earlier g > n® to
q > (log n)* (much sparser networks accommodated in our
setting)

m Relaxes lower bound on signal-to-noise ratio |dk,|/q from earlier

n®to /logn
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SIMPLE-RC for A Group of Nodes

Theorem 2. Assume that some regularity conditions hold. Then
SIMPLE-RC test statistic T satisfies that under null hypothesis Hp,

]P;{ T(KO) _2bm(K0) < X} _ g(x)

where ¢(x) = exp(—e™) denotes the Gumbel distribution and

bm(Ko) = 2|0gg + (Ko-2) Ioglogg _2logl (%)

:07

lim sup
n—oo XeR

with T'(+) representing the gamma function
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Continued

m Individual test statistics T; based on random coupling shown to
be asymptotically independent

m When m is bounded, asymptotic distribution of SIMPLE-RC test
statistic T becomes maximum of m/2 independent x% random
variables under H,

m Focus on more interesting case of diverging m in this work

m Interesting to see that limiting null distribution is free of random
variable Kgy

m Helpful in deriving asymptotic null distribution when we replace
Ko with its sample counterpart later
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Continued

Theorem 3. Assume that some regularity conditions hold and

Dy, [V, (i) = Vi, (j D[V())-V(
(12, 1B Vie (N =Vio (D]l 2 ¢ max [DIV()-V()]|

for a constant ¢ > 0 almost surely. If ¢o, > [dk Ak (P)]'/?\/log 1), then
SIMPLE-RC test statistic T satisfies that under alternative hypothesis
H,, for each arbitrarily large constant C > 0,

lim ]P’{T(KO) _zb’"(KO) > C} =1
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Estimation of Covariance Matrices and Empirical Versions

= Need to provide an estimate of covariance matrix X; ; and
specify choice of Ky

m Suggest consistent estimator s ,(Ko) of covarlance matrix
¥, ;(Ko) based on residual matrix W := X - X1, dicV,V

= Such estimator disregards completely weak signals dj with
Ko+1<k<d

m For testing a pair of nodes, suggest to use estimate
Ko := max{k e [n]:[dk| > G(log n)'/2 - loglog n}

with § > 0 and §? := maxje(n) X./L1 Xj maximum node degree

Jinchi Lv. USC Marshall — 32/48



Continued

m For the group test, suggest to use estimate
Ko := max{k € [n] : [dk| > §(log )*/2 - log log n}

m One can replace factor loglog n with another sequence C, » «
as n— oo

m Consistency of covariance matrix estimator and corresponding
asymptotic null distributions and power analysis for SIMPLE-RC
test with estimates }AZ,-,,-(KO) and K, rigorously established (fan, Fan,
L. and Yang, 2024)
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SIMPLE-RC with Degree Heterogeneity

m Further investigate more general case with degree heterogeneity

m Additional technical conditions required for dealing with more
challenging case of degree heterogeneity

m Asymptotic null distributions and power analysis for SIMPLE-RC
test statistics .7; and .7 with degree heterogeneity formally
JUStIfled (Fan, Fan, L. and Yang, 2024)

m In contrast, we lose one degree of freedom in asymptotic null
distributions due to use of eigenvector ratio statistics

Jinchi Lv. USC Marshall — 34/48



What is the key tool powering the theory of flexible group
network inference?
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A General Theoretical Foundation

m Our technical analyses empowered by novel asymptotic
expansions of spiked eigenvectors for large random matrices
with weak spikes

m Exploits tools of the Cauchy integral formula related to random
matrix X and the Green function G(z) (i.e., resolvent) for noise
random matrix W

m Need to characterize asymptotic behavior of x"G(z)y for any
deterministic unit vectors x,y € R” (convergence to a
deterministic limit named anisotropic local law)

m Key innovation in deriving sharper anisotropic local law for
resolvent G(z) under weaker conditions on sparsity level and
signal strength
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Continued

Much weaker signals with signal-to-noise ratio as low as /logn
and much sparser networks with sparsity as low as (log n)8/n

m Much finer and more delicate combinatorial arguments needed
for evaluating huge products of random matrices (exploiting
quadratic vector equation (QVE) instead of series expansion)

m Anisotropic local laws enable us to further derive precise
asymptotic expansions of empirical spiked eigenvectors

m Uniform results on asymptotic distributions of empirical spiked
eigenvectors key to random coupling for group network inference

m More comprehensive theory (Fan, Fan, L. and Yang, 2024)
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Numerical Studies
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Simulation Settings

m First example considers mixed membership model
m Set n=3000 and K =5 (each having ny = 300 pure nodes)

m Divide remaining n- Kng nodes into four groups of equal size
with community membership probability vectors a,’s

= Seta; =(0.1,0.6,0.1,0.1,0.1)7, a, = (0.6,0.1,0.1,0.1,0.1)7,
as =(0.1,0.1,0.6,0.1,0.1)7, and a4 = (1/K, -, 1/K)7

m nx K matrix of community membership probability vectors N

m Choose matrix P as a K x K nonsingular matrix with diagonal
entries one and (i, j)th entry p/|i—j| for 1 < i+ j< nwith p=0.2
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Continued

m Vary sparsity parameter 6 in {0.1,0.2,---,0.8} (smaller value for
lower average node degree and weaker signal strength)

m For null hypothesis Hy, choose a representative group .# of
m = |.#| =10 or 20 nodes from non-pure membership profile
group with community membership probability vector a;

m Apply SIMPLE-RC test with parameter Ky chosen to be in
{8,4,5} and repeat 500 times

m Further consider DCMM model (with network sparsity parameter
r?) and power analysis (with parameter 5 measuring distance
between two subgroups)
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Simulation Results

m Ky 4
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
10 3 0.052 0.028 0.034 0.04 0.032 002 0.022 0.028
4 0.148 0.094 0.086 0.078 0.086 0.06 0.056 0.076
5 0.328 0.188 0.204 0.182 0.194 0.142 0.132 0.138
20 3 0.038 0.026 0.028 0.018 0.024 0.032 0.018 0.024
4 0.108 0.064 0.06 0.048 0.044 0.056 0.04 0.064
5 0246 0.15 013 0.116 0.116 0.104 0.09 0.104

TABLE 1
The empirical sizes of the SIMPLE-RC test with test statistic T under different values of (m, K, 0) and with
nominal level o = 0.05 for simulation example 1 in Section 5.1.
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Continued

m Ky s
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

10 3 0.102  0.072 0.044 0.036 0.046 0.038 0.034 0.036
4 0.198 0.128 0.098 0.09 0.1 0.086 0.09  0.072
5 0.43 0246  0.196 0.19 016  0.174 0.162 0.136
20 3 0.118  0.044 0.05 0.05  0.052 0.044 0.03 0.042
4 0212 0.088 0.094 0.084 0.092 0.058 0.058 0.078
5 0372 0.192 0.174 015 0.162 0.12  0.116 0.124

TABLE 2
The empirical sizes of the SIMPLE-RC test with test statistic T under different values of (m, K, 7'2) and with
nominal level o = 0.05 for simulation example 2 in Section 5.1.
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Continued

m 4§ 0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
10 05 0922 0998 1 1 1 1 1 1
04 0496 0.756 0.888 0.966 0.992 0994 1 0.998

03 0.132 0.18 0218 0.288 042 0.56 0.598  0.722
02 0.098 0.088 0.088 0.1 0.116 0.176 0202 0.254
0.1 0.088 0.05 0.058 0.05 0.066  0.082 0.08 0.082
0 0.09 0.044  0.05 0.044 0.042 0.058 0.04 0.028

20 05 0978 0998 1 0998 1 0.998 0.998 1
04 059 0.884 0976 099% 1 0.998 0.998 1
03 0.146 0.166 0252 0384 0462 0.604 0.678 0.794
02 0.106 0.09 0076 0.116 0.116 0.172 0.216 0.248
0.1 0.09 0.066 0.054 0064 0044 0.07 0.06 0.094
0 0.07 0.06  0.038 0.036 0.028 0.032 0.022 0.042

TABLE 3
The empirical powers of the SIMPLE-RC test with test statistic T under different values of (m,8,0) and with
nominal level o = 0.05 for simulation example 3 in Section 5.2, where parameter K is chosen as 3.
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Continued

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

10 05 0.804 096 0986 1 1 1 1 1
04 0326 0478 0.666 0.788 0872 0.944 0952 097
03 0.138 0.122 0.148 0.178 0.186 0.216 0.296 0.282
02 0.134 0.078 0.064 0.066 0.068 0.068 0.076 0.066
0.1 0.132 0.068 0.056 0.05 0.058  0.06 0.072  0.05
0 0.132  0.056 0.052 0.044 0.044 0.06 0.07 0.042

20 05 0908 0994 0998 1 1 0996 1 1
04 048 0.596 0.766 0.888 0.966 0984 0.992 1
03 0224 0.098 0.16 0.168 0.238 0.272 0292 0.354
02 0.19 0.062 0.092 0.066 0.062 0.064 0.058 0.092
0.1 0202 0.07 0.058 0.048 0.046 0.044 0.042 0.046
0 0.186  0.054 0.07 0.056 0.044 0.042 0.042 0.052

TABLE 4
The empirical powers of the SIMPLE-RC test with test statistic T under different values of (m,é, 7'2) and with
nominal level o = 0.05 for simulation example 4 in Section 5.2, where parameter K is chosen as 3.
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Continued

m The empirical sizes of both forms of SIMPLE-RC test generally
controlled at the nominal level of « = 0.05 across different model
settings (in line with our theoretical results)

m The power of SIMPLE-RC test generally enhances as the
distance between the two subgroups increases and the signal
strength becomes stronger

m A larger value of m can boost the power of group network
inference with SIMPLE-RC under weaker signals
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Continued

m An interesting phenomenon that a lower value of parameter Ko
may be needed to alleviate the practical issue of rather weak
signals

= In contrast, the choice of K, as the true value of K =5 can
render the sizes much inflated at the presence of weak signals

m More comprehensive numerical studies on group network
inference (as well as a financial application) investigated in the
paper (similar empirical findings)

Jinchi Lv. USC Marshall — 46/48



Conclusions

m Suggested a tool for group network inference with precise
p-values on testing whether two groups of nodes share similar
membership profiles

m Generally applicable to networks with or without overlapping
communities and degree heterogeneity

m Established simple-to-use asymptotic null distributions and
power analysis empowered by our new theory for random
matrices with weak spikes

m Revealed an interesting phenomenon of eigen-selection for valid
network inference
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