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A Networked World

II: A Networked World 
• How to test whether a pair of social media 

users or text documents belong to the same 
community? 
 

10 

Individual nodes of a network (e.g. social media users or text
documents) may share similarities in the latent space

Common to provide binary answers (i.e. Y/N) based on
community labeling given by clustering
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Network P-Values

P-value tables routinely produced and utilized for linear and
logistic regression applications

Important to provide a p-value table for network applications

A simple, natural question is how to test whether a pair of social
media users or text documents belong to the same community

The recent work of SIMPLE (statistical inference on membership
profiles in large networks; Fan, Fan, Han and L., 2022b) provided a first
attempt toward such a practical need

Accommodates overlapping communities and degree
heterogeneity
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Continued

In practice, we are often interested in investigating a group of
individuals as opposed to a pair of nodes

The group of individuals might share similar (but not necessarily
identical) community membership profiles

Real network applications may exhibit much more network
sparsity and much lower signal strength, while SIMPLE required
relatively strong assumptions on both network sparsity and
signal strength

Important to enable network inference with flexibility and
theoretical guarantees
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A Motivating Example

SIMPLE-RC 23

Technology Healthcare Financial Energy Communication

Technology 5.420 8.760 25.036 19.225 39.324
Healthcare 8.760 6.762 8.514 8.132 39.324
Financial 25.036 8.514 0.601 17.050 39.324
Energy 19.225 8.132 17.050 0.414 39.324
Communication 39.324 39.324 39.324 39.324 0.892

TABLE 5
The values of the SIMPLE-RC test statistic T for different groups of selected stocks within and across the five

sectors for the stock data example in Section 6.

Technology Healthcare Financial Energy Communication

Technology 0.1246 0.0247 0.0000 0.0001 0.0000
Healthcare 0.0247 0.0658 0.0279 0.0337 0.0000
Financial 0.0000 0.0279 0.7726 0.0004 0.0000
Energy 0.0001 0.0337 0.0004 0.8033 0.0000
Communication 0.0000 0.0000 0.0000 0.0000 0.7220

TABLE 6
The corresponding p-values of the SIMPLE-RC test with test statistic T for different groups of selected stocks

within and across the five sectors for the stock data example in Section 6.

list, the daily closing prices over the specified time period are converted into a time series of
the daily log returns. We further remove any stocks with missing values, which yields a total
of n= 495 stocks. It is well-known from finance that all the individual stock excess returns
(i.e., returns minus the risk-free interest rate) are correlated globally through some common
factors such as the Fama–French factors. To better understand the intrinsic network structure,
we regress the time series of excess returns for each stock on the Fama–French three factors
and treat the resulting residual vector as a new time series for the stock, which corresponds
to the idiosyncratic components of the factor model.

We are now ready to construct the n × n adjacency matrix X for the group network in-
ference. To this end, let us first calculate the correlation matrix based on the new time series
above and then apply a simple hard-thresholding with threshold 0.5 to each entry of the
absolute correlation matrix, which gives rise to an n × n binary data matrix X. Since the
stock network is known to be of node degree heterogeneity, we will apply the SIMPLE-
RC test introduced in Section 3.4 with test statistic T given in (55). We choose parameter
K0 as 3 following the analysis in [17]. It remains to specify the groups out of the above
list of n stocks. Specifically, we consider a total of five groups labelled as Technology,
Healthcare, Financial Services, Energy, and Communication Services,
which correspond to five sectors of the stock market. For the technology sector, we select a
list of four stocks: Apple (AAPL), IBM (IBM), Intel (INTC), and NVIDIA (NVDA). For the
healthcare sector, we select a list of four stocks: Abbott Laboratories (ABT), Amgen (AMGN),
Eli Lilly (LLY), and UnitedHealth Group (UNH). For the financial services sector, we select a
list of four stocks: Bank of America (BAC), Citigroup (C), Goldman Sachs (GS), and JPMor-
gan Chase (JPM). For the energy sector, we select a list of four stocks: Chevron (CVX), Devon
Energy (DVN), EOG Resources (EOG), and Exxon Mobil (XOM). Finally, for the communi-
cation services sector, we select a list of four stocks: Activision Blizzard (ATVI), Comcast
(CMCSA), DISH Network (DISH), and Netflix (NFLX).

For each group and each pair of groups, we calculate the values of the SIMPLE-RC test
statistic T and the associated p-values as in simulation examples 2 and 4 from Section 5,
with the choice of group size m = |M| = 4 (when conducting the between-group tests, we
randomly sample two stocks from the pool of four in each group). Table 5 presents the values

Stocks in S&P 500 list can have non-identical community
membership profiles even within the same sector of stock
market (due to complicated structures)

Desired to test whether a group of individuals (network nodes)
might share similar (not necessarily identical) community
membership profiles
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An Interesting Phenomenon

6

APPENDIX B: ADDITIONAL SIMULATION RESULTS CORRESPONDING TO
SECTIONS 5.1 AND 5.2

Figures 1 and 2 depict some representative empirical null distributions of both forms of the
SIMPLE-RC test with test statistics T and T for simulation examples 1 and 2, respectively.
We see that even under weak signals (i.e., small values of θ), the empirical null distributions
of the SIMPLE-RC test closely match the theoretical asymptotic null distributions established
in Theorems 2, 5, 7, and 8 under the choice of K0 = 3. In contrast, when the parameter
K0 increases from 3 to the true value of K = 5, the discrepancy between the empirical and
theoretical null distributions becomes more pronounced. Such a phenomenon is indeed in line
with our theoretical findings presented in Section 3, reflecting the impact of weak signals on
group network inference with SIMPLE-RC through the choice of parameter K0.
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FIG 1. The representative empirical null distributions (the black curves with kernel smoothing) of the SIMPLE-RC
test statistic T under different values of (θ,K0) and with m= 10 for simulation example 1 in Section 5.1. The
red curves represent the asymptotic null distributions specified in Theorems 2 and 5.

Figures 3 and 4 depict some representative empirical distributions of both forms of the
SIMPLE-RC test with test statistics T and T for simulation examples 3 and 4, respectively.
In particular, the signal strengths are rather weak in view of the small values of parameter θ in
Figure 3 and parameter r2 in Figure 4. As mentioned above, the value of δ = 0 corresponds to
the scenario when the data is generated according to the sharp null hypothesis, while that of
δ = 0.1 corresponds to the scenario when the data is generated according to the non-sharp null
hypothesis. We see from Figures 3 and 4 that the empirical distributions of the SIMPLE-RC
test for δ = 0 and 0.1 closely match the asymptotic null distributions revealed in Theorems
2, 5, 7, and 8 under non-sharp nulls and weak signals. Similarly as in simulation examples 1
and 2, when the signal strength becomes too weak (e.g., the value of 0.1 for network sparsity
parameters θ or r2), a lower value of parameter K0 may improve the distributional fits in
Figures 3 and 4, which can in turn lead to more reasonable (i.e., non-inflated) empirical sizes
as parameter δ→ 0+ (see the cases of θ = 0.1 in Figure 3 and r2 = 0.1 in Figure 4).

Empirical null distributions of SIMPLE-RC test (to be introduced)
may deviate from limiting distributions under weak signals

Choice of parameter K0 is crucial (though true K = 5)

Any theoretical justifications under the lens of random matrix
theory?
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Questions of Interest

How to design a tool for flexible group network inference with
precise p-values on testing whether a group of nodes might
share similar (not necessarily identical) community membership
profiles

How to deal with the challenging case of sparse networks and
weak signals and accommodate popularly used network
models?

How to develop a more general framework of asymptotic theory
on spiked eigenvectors and eigenvalues for large structured
random matrices powering group network inference with
non-sharp nulls and weak signals?
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Group Network Inference with SIMPLE-RC
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Model Setting

Consider a network with n nodes {1,⋯,n} and adjacency matrix
X = (xij) ∈ Rn×n representing connectivity structure of network
with xij = 1 for link and 0 for no link (Bhattacharyya and Bickel, 2016; Abbe, 2017;

Le, Levina and Vershynin, 2018; Fan, Fan, Han and L., 2022b; ...)

Assume adjacency matrix can be written generally as

X = H +W

H = (hij) ∈ Rn×n is deterministic mean matrix

W = (wij) ∈ Rn×n is symmetric random noise matrix with
independent diagonal and upper diagonal entries satisfying
Ewij = 0 and max1≤i,j≤n ∣wij ∣ ≤ 1
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Continued

Noise random matrix W known as generalized Wigner matrix

Links xij ’s independent Bernoulli random variables with means hij

Assume network can be decomposed into K communities
C1,⋯,CK

Each node i has community membership probability vector
πi = (πi(1),⋯,πi(K ))T ∈ RK with πi(k) ∈ [0,1], ∑K

k=1 πi(k) = 1,
and

P{node i belongs to community Ck} = πi(k)

Allow number of communities K to be slowly diverging (of order
(log n)c) and unknown
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Group Network Inference with Non-Sharp Nulls

For any given group of nodes M ⊂ {1,⋯,n}, our goal is to infer
whether they share similar (but not necessarily identical)
membership profiles (i.e. probability vectors) with quantified
uncertainty level from observed adjacency matrix X

Interested in testing non-sharp null hypothesis

H0 ∶ max
i,j∈M

∥πi −πj∥ ≤ c1n

versus alternative hypothesis

Ha ∶ max
i,j∈M

λ
1/2
min {(πi ,πj)

⊺
(πi ,πj)} > c2n

with λmin{⋅} denoting smallest eigenvalue and c2n > c1n two
positive sequences slowly converging to zero
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Continued

Formulation of alternative hypothesis motivated by our
theoretical analyses

H0 gives an upper bound on maxi,j∈M λ
1/2
min{(πi ,πj)

⊺
(πi ,πj)},

while Ha implies a lower bound on maxi,j∈M ∥πi −πj∥

To make problem more explicit, we first exploit mixed
membership model without degree heterogeneity by assuming
EX = H = θΠPΠT (Airoldi, Blei, Fienberg and Xing, 2008)

We further exploit degree-corrected mixed membership model
for degree heterogeneity assuming EX = H =ΘΠPΠTΘ (Zhang,

Levina and Zhu, 2014; Jin, Ke and Luo, 2017)
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Mixed Membership Model

For now focus on mixed membership model without degree
heterogeneity by assuming EX = H = θΠPΠT (Airoldi, Blei, Fienberg and

Xing, 2008)

Scalar θ > 0 (network sparsity parameter ) allowed to converge to
0 as n →∞

Π = (π1,⋯,πn)
T ∈ Rn×K is matrix of membership probability

vectors and P = (pkl) ∈ RK×K is nonsingular matrix with pkl ∈ [0,1]

Including stochastic block model with non-overlapping
communities (when each πi has one nonzero component)

Jinchi Lv, USC Marshall – 14/48



Population and Empirical Eigenstructures

Denote by H = VDVT eigendecomposition of mean matrix

D = diag{d1,⋯,dK} with ∣d1∣ ≥ ⋯ ≥ ∣dK ∣ > 0 is matrix of nonzero
eigenvalues in descending order in magnitude and
V = (v1,⋯,vK ) ∈ Rn×K is orthonormal matrix of corresponding
eigenvectors

Denote by d̂1,⋯, d̂n eigenvalues of X and v̂1,⋯, v̂n corresponding
eigenvectors

Without loss of generality, assume ∣d̂1∣ ≥ ⋯ ≥ ∣d̂n∣ and denote by
V̂ = (v̂1,⋯, v̂K ) ∈ Rn×K (consisting of top K empirical spiked
eigenvectors)
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SIMPLE-RC for A Pair of Nodes

To motivate our method SIMPLE-RC, begin with case of
m = ∣M ∣ = 2 (testing a pair of given network nodes {i , j})

Let K0 be an integer with 1 ≤ K0 ≤ K , VK0 an n ×K0 matrix formed
by first K0 columns of V, and DK0 a K0 ×K0 principal minor of D
containing its first K0 diagonal entries

A simple observation is that under mixed membership model, H0
entails

∥DK0 [VK0(i) −VK0(j)]∥ ≤ c1n

√
d1θmax

with θmax = λ1(P)θ (i th and jth rows viewed as column vectors)
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Continued

Another useful observation is that under mixed membership
model, Ha entails

∥DK0 [VK0(i) −VK0(j)]∥ ≳ c2n

√
dK θmin

with θmin = λK (P)θ, provided that

∥DK0 [VK0(i) −VK0(j)]∥ ≥ c ∥D [V(i) −V(j)]∥

for some constant c > 0

Under the above assumption, using only VK0 (instead of V) can
still capture a significant fraction of difference between πi and πj

Important for achieving high power using SIMPLE-RC
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Continued

Motivated by these observations, we suggest following ideal
SIMPLE-RC test statistic to assess membership profile
information for node pair {i , j}

Tij(K0) ∶= [V̂K0(i) − V̂K0(j)]
T
[Σi,j(K0)]

−1
[V̂K0(i) − V̂K0(j)]

with 1 ≤ K0 ≤ K some pre-determined number and V̂K0 the n ×K0

matrix formed by first K0 columns of V̂

Σi,j(K0) = cov[(ei − ej)
T WVK0D

−1
K0

] with ei ∈ Rn unit vector with i th
component 1
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Continued

Reduces to original SIMPLE test statistic (Fan, Fan, Han and L., 2022b) for
the case of sharp null (i.e. c1n = 0) and with choice of K0 = K (for
strong signals)

Choice of parameter 1 ≤ K0 ≤ K for SIMPLE-RC plays a key role
in network inference under weak signals (one of major
distinctions from the work of SIMPLE)

We can provide an estimate of covariance matrix Σi,j and specify
choice of K0 with theoretical justifications (more details later )
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SIMPLE-RC for A Group of Nodes

Now consider group testing for the case of diverging m = ∣M ∣

and assume m ∈ 2N (for simplicity )

A natural idea would be to investigate test statistic max{i,j}⊂M Tij

Yet doing so is rather challenging because of potentially high
correlations among all individual Tij ’s

To deal with such a challenging issue, we suggest a random
coupling strategy for group network inference

This gives rise to the name of our SIMPLE-RC method
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Continued

Randomly pick pairs of nodes in group M without replacement
until all nodes are coupled

Denote by P set of resulting pairs of such random coupling

Given random coupling set P, formally define our SIMPLE-RC
test statistic T as

T = max
{i,j}∈P

Tij

We show formally that under suitable centering and rescaling,
SIMPLE-RC test statistic T converges to a Gumbel distribution
under H0 (more details later including power analysis)
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SIMPLE-RC with Degree Heterogeneity

We further investigate more general case with degree
heterogeneity

Exploit degree-corrected mixed membership model for degree
heterogeneity assuming EX = H =ΘΠPΠTΘ (Zhang, Levina and Zhu, 2014;

Jin, Ke and Luo, 2017)

Θ = diag{θ1,⋯, θn} with θi > 0 is degree heterogeneity matrix

Also suggested another form of SIMPLE-RC test statistics Tij
and T (similar flavor but different form) and established parallel
asymptotic distributions as well as power analysis (exploiting
eigenvector ratio statistics)

More details and comprehensive theory (Fan, Fan, L. and Yang, 2024)
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What is the theory behind such a procedure?
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Theoretical Justifications
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Technical Conditions

Condition 1:

(i) (Network sparsity ) It holds that q ≫ (log n)4 with q =
√

nθ

(ii) (Spiked eigenvalues) It holds that ∣dk ∣ ≥ q log log n for all
1 ≤ k ≤ K0

(iii) (Eigengap) There exists some constant ε0 > 0 such that

min
1≤k≤K0

∣dk ∣

∣dk+1∣
> 1 + ε0,

where we do not require eigengaps for smaller eigenvalues
∣dk ∣ with K0 + 1 ≤ k ≤ K

(iv) (Mean matrix) There exists some constant ε1 > 0 such that
maxi,j∈[n] hij ≤ 1 − ε1 and maxi∈[n]∑j∈[n] hij ≥ ε1nθ, and the
eigenvalues of P satisfy that 0 < λK (P) ≤ ⋯ ≤ λ1(P) ≤ C for
some large constant C > 0
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Continued

Condition 1:

(v) (Covariance matrix) There exists some constant 0 < ε2 < 1
such that all the eigenvalues of θ−1DK ′0

Σi,j(K ′
0)DK ′0

are
between ε2 and ε−1

2 for all {i , j} ⊂ M and 1 ≤ K ′
0 ≤ K0

For fixed ε0 and ε2, denote by Kmax ≡ Kmax(n, ε0, ε2) ≤ K the
largest K0 such that parts (ii), (iii), and (v) above hold

Parameter q is key to our technical study (giving typical size of
eigenvalues of noise random matrix W)

Much weaker assumptions on network sparsity and signal
strength (i.e. signal-to-noise ratio)
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SIMPLE-RC for A Pair of Nodes

Theorem 1. Assume that some regularity conditions hold, K0 is a
random variable such that 1 ≤ K0 ≤ Kmax ∧C0 almost surely for some

large constant C0 > 0, and 1 ≤ K ≪
q

(
√

n ∥V∥max) log n
∧

∣dK0 ∣
2

(
√

n ∥V∥max)2q2
.

Then test statistic Tij(K0) satisfies that

(i) If c1n ≪ [d1λ1(P)]−
1
2 , it holds that under null hypothesis H0,

lim
n→∞

sup
x∈R

∣P{Tij(K0) ≤ x} − FK0(x)∣ = 0,

where conditional on K0, FK0 is chi-square distribution with K0
degrees of freedom

(ii) If c2n ≫ [dKλK (P)]−
1
2 , it holds that under alternative hypothesis

Ha,
lim

n→∞
P{Tij(K0) > C} = 1

for each arbitrarily large constant C > 0
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Continued

Establishes important extensions of recent results (Fan, Fan, Han and L.,

2022a and 2022b)

Considers hypothesis testing with non-sharp nulls

Allows for slowly diverging number of communities K

Relaxes lower bound on parameter q from earlier q ≥ nε to
q ≫ (log n)4 (much sparser networks accommodated in our
setting)

Relaxes lower bound on signal-to-noise ratio ∣dK0 ∣/q from earlier
nε to

√
log n
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SIMPLE-RC for A Group of Nodes

Theorem 2. Assume that some regularity conditions hold. Then
SIMPLE-RC test statistic T satisfies that under null hypothesis H0,

lim
n→∞

sup
x∈R

∣P{
T (K0) − bm(K0)

2
≤ x} − G (x)∣ = 0,

where G (x) = exp(−e−x) denotes the Gumbel distribution and

bm(K0) = 2 log
m
2
+ (K0 − 2) log log

m
2
− 2 log Γ(

K0

2
)

with Γ(⋅) representing the gamma function
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Continued

Individual test statistics Tij based on random coupling shown to
be asymptotically independent

When m is bounded, asymptotic distribution of SIMPLE-RC test
statistic T becomes maximum of m/2 independent χ2

K0
random

variables under H0

Focus on more interesting case of diverging m in this work

Interesting to see that limiting null distribution is free of random
variable K0

Helpful in deriving asymptotic null distribution when we replace
K0 with its sample counterpart later
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Continued

Theorem 3. Assume that some regularity conditions hold and

max
{i,j}⊂M

∥DK0 [VK0(i) −VK0(j)]∥ ≥ c max
{i,j}⊂M

∥D [V(i) −V(j)]∥

for a constant c > 0 almost surely. If c2n ≫ [dKλK (P)]−1/2√log n , then
SIMPLE-RC test statistic T satisfies that under alternative hypothesis
Ha, for each arbitrarily large constant C > 0,

lim
n→∞

P{
T (K0) − bm(K0)

2
> C} = 1
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Estimation of Covariance Matrices and Empirical Versions

Need to provide an estimate of covariance matrix Σi,j and
specify choice of K0

Suggest consistent estimator Σ̂i,j(K0) of covariance matrix
Σi,j(K0) based on residual matrix Ŵ ∶= X −∑

K0
k=1 d̂k v̂k v̂⊺k

Such estimator disregards completely weak signals d̂k with
K0 + 1 ≤ k ≤ d

For testing a pair of nodes, suggest to use estimate

K̂0 ∶= max{k ∈ [n] ∶ ∣d̂k ∣ ≥ q̌(log n)1/2
⋅ log log n}

with q̌ > 0 and q̌2 ∶= maxj∈[n]∑
n
l=1 Xlj maximum node degree
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Continued

For the group test, suggest to use estimate

K̂0 ∶= max{k ∈ [n] ∶ ∣d̂k ∣ ≥ q̌(log n)3/2
⋅ log log n}

One can replace factor log log n with another sequence Cn →∞

as n →∞

Consistency of covariance matrix estimator and corresponding
asymptotic null distributions and power analysis for SIMPLE-RC
test with estimates Σ̂i,j(K0) and K̂0 rigorously established (Fan, Fan,

L. and Yang, 2024)
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SIMPLE-RC with Degree Heterogeneity

Further investigate more general case with degree heterogeneity

Additional technical conditions required for dealing with more
challenging case of degree heterogeneity

Asymptotic null distributions and power analysis for SIMPLE-RC
test statistics Tij and T with degree heterogeneity formally
justified (Fan, Fan, L. and Yang, 2024)

In contrast, we lose one degree of freedom in asymptotic null
distributions due to use of eigenvector ratio statistics
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What is the key tool powering the theory of flexible group
network inference?
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A General Theoretical Foundation

Our technical analyses empowered by novel asymptotic
expansions of spiked eigenvectors for large random matrices
with weak spikes

Exploits tools of the Cauchy integral formula related to random
matrix X and the Green function G(z) (i.e., resolvent) for noise
random matrix W

Need to characterize asymptotic behavior of x⊺G(z)y for any
deterministic unit vectors x,y ∈ Rn (convergence to a
deterministic limit named anisotropic local law)

Key innovation in deriving sharper anisotropic local law for
resolvent G(z) under weaker conditions on sparsity level and
signal strength
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Continued

Much weaker signals with signal-to-noise ratio as low as
√

log n
and much sparser networks with sparsity as low as (log n)8/n

Much finer and more delicate combinatorial arguments needed
for evaluating huge products of random matrices (exploiting
quadratic vector equation (QVE) instead of series expansion)

Anisotropic local laws enable us to further derive precise
asymptotic expansions of empirical spiked eigenvectors

Uniform results on asymptotic distributions of empirical spiked
eigenvectors key to random coupling for group network inference

More comprehensive theory (Fan, Fan, L. and Yang, 2024)
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Numerical Studies
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Simulation Settings

First example considers mixed membership model

Set n = 3000 and K = 5 (each having n0 = 300 pure nodes)

Divide remaining n −Kn0 nodes into four groups of equal size
with community membership probability vectors al ’s

Set a1 = (0.1,0.6,0.1,0.1,0.1)T , a2 = (0.6,0.1,0.1,0.1,0.1)T ,
a3 = (0.1,0.1,0.6,0.1,0.1)T , and a4 = (1/K ,⋯,1/K )T

n ×K matrix of community membership probability vectors Π

Choose matrix P as a K ×K nonsingular matrix with diagonal
entries one and (i , j)th entry ρ/∣i − j ∣ for 1 ≤ i ≠ j ≤ n with ρ = 0.2
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Continued

Vary sparsity parameter θ in {0.1,0.2,⋯,0.8} (smaller value for
lower average node degree and weaker signal strength)

For null hypothesis H0, choose a representative group M of
m = ∣M ∣ = 10 or 20 nodes from non-pure membership profile
group with community membership probability vector a1

Apply SIMPLE-RC test with parameter K0 chosen to be in
{3,4,5} and repeat 500 times

Further consider DCMM model (with network sparsity parameter
r2) and power analysis (with parameter δ measuring distance
between two subgroups)
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Simulation Results

SIMPLE-RC 21

m K0 θ
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

10 3 0.052 0.028 0.034 0.04 0.032 0.02 0.022 0.028
4 0.148 0.094 0.086 0.078 0.086 0.06 0.056 0.076
5 0.328 0.188 0.204 0.182 0.194 0.142 0.132 0.138

20 3 0.038 0.026 0.028 0.018 0.024 0.032 0.018 0.024
4 0.108 0.064 0.06 0.048 0.044 0.056 0.04 0.064
5 0.246 0.15 0.13 0.116 0.116 0.104 0.09 0.104

TABLE 1
The empirical sizes of the SIMPLE-RC test with test statistic T under different values of (m,K0, θ) and with

nominal level α= 0.05 for simulation example 1 in Section 5.1.

m K0 r2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

10 3 0.102 0.072 0.044 0.036 0.046 0.038 0.034 0.036
4 0.198 0.128 0.098 0.09 0.1 0.086 0.09 0.072
5 0.43 0.246 0.196 0.19 0.16 0.174 0.162 0.136

20 3 0.118 0.044 0.05 0.05 0.052 0.044 0.03 0.042
4 0.212 0.088 0.094 0.084 0.092 0.058 0.058 0.078
5 0.372 0.192 0.174 0.15 0.162 0.12 0.116 0.124

TABLE 2
The empirical sizes of the SIMPLE-RC test with test statistic T under different values of (m,K0, r

2) and with
nominal level α= 0.05 for simulation example 2 in Section 5.1.

5.2. The power of SIMPLE-RC. We further investigate the power performance for both
forms of the SIMPLE-RC test with significance level α = 0.05. To this end, we will intro-
duce two additional simulation examples. Our simulation example 3 is similar to simulation
example 1 in Section 5.1 except that the second non-pure membership profile group with
community membership probability vector a2 is now defined through a2 = (0.1 + δ,0.6 −
δ,0.1,0.1,0.1)T , where the additional parameter δ varies in {0.5,0.4, · · · ,0}. Observe that
parameter δ measures the overall distance between a1 and a2. In particular, the nodes in
the first two non-pure membership profile groups will share more similar (but non-identical)
membership profiles as δ stays positive and approaches zero. To specify the alternative hy-
pothesis Ha in (5), we choose a representative group M of m = 10 or 20 nodes with half
corresponding to a1 and the other half corresponding to a2. For each model setting of simula-
tion example 3, we apply the SIMPLE-RC test without degree heterogeneity. Our simulation
example 4 is also similar to simulation example 2 in Section 5.1, but with the same modifica-
tions made to both a2 and the representative groupM as above. We apply the SIMPLE-RC
test with degree heterogeneity for simulation example 4. Simulation examples 3 and 4 in-
troduced above will showcase the empirical powers for both forms of the SIMPLE-RC test,
respectively. As demonstrated in Section 5.1, we will focus our attention on the choice of
parameter K0 = 3 for the power investigations.

We present some representative empirical distribution plots of both forms of the SIMPLE-
RC test for simulation examples 3 and 4, respectively, in Section B of the Supplementary
Material. It is worth mentioning that those plots provide part of the insights into the power
of the SIMPLE-RC test, because suitably small values of parameter δ make the non-sharp
null hypothesis H0 in (4) satisfied. Tables 3 and 4 further provide a more complete picture on
the empirical powers of both forms of the SIMPLE-RC test across different model settings
for simulation examples 3 and 4, respectively. From Tables 3 and 4, we see that the power

Jinchi Lv, USC Marshall – 41/48



Continued

SIMPLE-RC 21

m K0 θ
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

10 3 0.052 0.028 0.034 0.04 0.032 0.02 0.022 0.028
4 0.148 0.094 0.086 0.078 0.086 0.06 0.056 0.076
5 0.328 0.188 0.204 0.182 0.194 0.142 0.132 0.138

20 3 0.038 0.026 0.028 0.018 0.024 0.032 0.018 0.024
4 0.108 0.064 0.06 0.048 0.044 0.056 0.04 0.064
5 0.246 0.15 0.13 0.116 0.116 0.104 0.09 0.104

TABLE 1
The empirical sizes of the SIMPLE-RC test with test statistic T under different values of (m,K0, θ) and with

nominal level α= 0.05 for simulation example 1 in Section 5.1.

m K0 r2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

10 3 0.102 0.072 0.044 0.036 0.046 0.038 0.034 0.036
4 0.198 0.128 0.098 0.09 0.1 0.086 0.09 0.072
5 0.43 0.246 0.196 0.19 0.16 0.174 0.162 0.136

20 3 0.118 0.044 0.05 0.05 0.052 0.044 0.03 0.042
4 0.212 0.088 0.094 0.084 0.092 0.058 0.058 0.078
5 0.372 0.192 0.174 0.15 0.162 0.12 0.116 0.124

TABLE 2
The empirical sizes of the SIMPLE-RC test with test statistic T under different values of (m,K0, r

2) and with
nominal level α= 0.05 for simulation example 2 in Section 5.1.

5.2. The power of SIMPLE-RC. We further investigate the power performance for both
forms of the SIMPLE-RC test with significance level α = 0.05. To this end, we will intro-
duce two additional simulation examples. Our simulation example 3 is similar to simulation
example 1 in Section 5.1 except that the second non-pure membership profile group with
community membership probability vector a2 is now defined through a2 = (0.1 + δ,0.6 −
δ,0.1,0.1,0.1)T , where the additional parameter δ varies in {0.5,0.4, · · · ,0}. Observe that
parameter δ measures the overall distance between a1 and a2. In particular, the nodes in
the first two non-pure membership profile groups will share more similar (but non-identical)
membership profiles as δ stays positive and approaches zero. To specify the alternative hy-
pothesis Ha in (5), we choose a representative group M of m = 10 or 20 nodes with half
corresponding to a1 and the other half corresponding to a2. For each model setting of simula-
tion example 3, we apply the SIMPLE-RC test without degree heterogeneity. Our simulation
example 4 is also similar to simulation example 2 in Section 5.1, but with the same modifica-
tions made to both a2 and the representative groupM as above. We apply the SIMPLE-RC
test with degree heterogeneity for simulation example 4. Simulation examples 3 and 4 in-
troduced above will showcase the empirical powers for both forms of the SIMPLE-RC test,
respectively. As demonstrated in Section 5.1, we will focus our attention on the choice of
parameter K0 = 3 for the power investigations.

We present some representative empirical distribution plots of both forms of the SIMPLE-
RC test for simulation examples 3 and 4, respectively, in Section B of the Supplementary
Material. It is worth mentioning that those plots provide part of the insights into the power
of the SIMPLE-RC test, because suitably small values of parameter δ make the non-sharp
null hypothesis H0 in (4) satisfied. Tables 3 and 4 further provide a more complete picture on
the empirical powers of both forms of the SIMPLE-RC test across different model settings
for simulation examples 3 and 4, respectively. From Tables 3 and 4, we see that the power
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m δ θ
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

10 0.5 0.922 0.998 1 1 1 1 1 1
0.4 0.496 0.756 0.888 0.966 0.992 0.994 1 0.998
0.3 0.132 0.18 0.218 0.288 0.42 0.56 0.598 0.722
0.2 0.098 0.088 0.088 0.1 0.116 0.176 0.202 0.254
0.1 0.088 0.05 0.058 0.05 0.066 0.082 0.08 0.082
0 0.09 0.044 0.05 0.044 0.042 0.058 0.04 0.028

20 0.5 0.978 0.998 1 0.998 1 0.998 0.998 1
0.4 0.596 0.884 0.976 0.996 1 0.998 0.998 1
0.3 0.146 0.166 0.252 0.384 0.462 0.604 0.678 0.794
0.2 0.106 0.09 0.076 0.116 0.116 0.172 0.216 0.248
0.1 0.09 0.066 0.054 0.064 0.044 0.07 0.06 0.094
0 0.07 0.06 0.038 0.036 0.028 0.032 0.022 0.042

TABLE 3
The empirical powers of the SIMPLE-RC test with test statistic T under different values of (m,δ, θ) and with

nominal level α= 0.05 for simulation example 3 in Section 5.2, where parameter K0 is chosen as 3.

m δ r2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

10 0.5 0.804 0.96 0.986 1 1 1 1 1
0.4 0.326 0.478 0.666 0.788 0.872 0.944 0.952 0.97
0.3 0.138 0.122 0.148 0.178 0.186 0.216 0.296 0.282
0.2 0.134 0.078 0.064 0.066 0.068 0.068 0.076 0.066
0.1 0.132 0.068 0.056 0.05 0.058 0.06 0.072 0.05
0 0.132 0.056 0.052 0.044 0.044 0.06 0.07 0.042

20 0.5 0.908 0.994 0.998 1 1 0.996 1 1
0.4 0.48 0.596 0.766 0.888 0.966 0.984 0.992 1
0.3 0.224 0.098 0.16 0.168 0.238 0.272 0.292 0.354
0.2 0.19 0.062 0.092 0.066 0.062 0.064 0.058 0.092
0.1 0.202 0.07 0.058 0.048 0.046 0.044 0.042 0.046
0 0.186 0.054 0.07 0.056 0.044 0.042 0.042 0.052

TABLE 4
The empirical powers of the SIMPLE-RC test with test statistic T under different values of (m,δ, r2) and with

nominal level α= 0.05 for simulation example 4 in Section 5.2, where parameter K0 is chosen as 3.

of the SIMPLE-RC test generally approaches one as parameter δ increases from 0 to 0.5.
Moreover, the power enhances as the signal strength becomes stronger (i.e., as parameter θ or
r2 increases). We also observe that a larger value of m can boost the power of group network
inference with SIMPLE-RC particularly under weaker signals, which is natural and sensible.
These empirical results confirm our asymptotic theory on the power analysis established in
Section 3.

6. Real data application. We further demonstrate the practical utilities of the SIMPLE-
RC for group network inference with a financial application. As in [17], we consider the
network of stocks in the Standard and Poor 500 (S&P 500) list, which index tracks the stock
performance of 500 large companies listed on exchanges in the United States. Each node of
the network represents the time series of a stock. Specifically, we look at a three-year period
of January 3, 2017 to December 30, 2019. The main reason for choosing a three-year period
instead of a longer time horizon is that the underlying network structure may change when
the time horizon expands due to various economic factors. For each stock in the S&P 500
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m δ θ
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

10 0.5 0.922 0.998 1 1 1 1 1 1
0.4 0.496 0.756 0.888 0.966 0.992 0.994 1 0.998
0.3 0.132 0.18 0.218 0.288 0.42 0.56 0.598 0.722
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0.1 0.088 0.05 0.058 0.05 0.066 0.082 0.08 0.082
0 0.09 0.044 0.05 0.044 0.042 0.058 0.04 0.028

20 0.5 0.978 0.998 1 0.998 1 0.998 0.998 1
0.4 0.596 0.884 0.976 0.996 1 0.998 0.998 1
0.3 0.146 0.166 0.252 0.384 0.462 0.604 0.678 0.794
0.2 0.106 0.09 0.076 0.116 0.116 0.172 0.216 0.248
0.1 0.09 0.066 0.054 0.064 0.044 0.07 0.06 0.094
0 0.07 0.06 0.038 0.036 0.028 0.032 0.022 0.042

TABLE 3
The empirical powers of the SIMPLE-RC test with test statistic T under different values of (m,δ, θ) and with

nominal level α= 0.05 for simulation example 3 in Section 5.2, where parameter K0 is chosen as 3.

m δ r2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

10 0.5 0.804 0.96 0.986 1 1 1 1 1
0.4 0.326 0.478 0.666 0.788 0.872 0.944 0.952 0.97
0.3 0.138 0.122 0.148 0.178 0.186 0.216 0.296 0.282
0.2 0.134 0.078 0.064 0.066 0.068 0.068 0.076 0.066
0.1 0.132 0.068 0.056 0.05 0.058 0.06 0.072 0.05
0 0.132 0.056 0.052 0.044 0.044 0.06 0.07 0.042

20 0.5 0.908 0.994 0.998 1 1 0.996 1 1
0.4 0.48 0.596 0.766 0.888 0.966 0.984 0.992 1
0.3 0.224 0.098 0.16 0.168 0.238 0.272 0.292 0.354
0.2 0.19 0.062 0.092 0.066 0.062 0.064 0.058 0.092
0.1 0.202 0.07 0.058 0.048 0.046 0.044 0.042 0.046
0 0.186 0.054 0.07 0.056 0.044 0.042 0.042 0.052

TABLE 4
The empirical powers of the SIMPLE-RC test with test statistic T under different values of (m,δ, r2) and with

nominal level α= 0.05 for simulation example 4 in Section 5.2, where parameter K0 is chosen as 3.

of the SIMPLE-RC test generally approaches one as parameter δ increases from 0 to 0.5.
Moreover, the power enhances as the signal strength becomes stronger (i.e., as parameter θ or
r2 increases). We also observe that a larger value of m can boost the power of group network
inference with SIMPLE-RC particularly under weaker signals, which is natural and sensible.
These empirical results confirm our asymptotic theory on the power analysis established in
Section 3.

6. Real data application. We further demonstrate the practical utilities of the SIMPLE-
RC for group network inference with a financial application. As in [17], we consider the
network of stocks in the Standard and Poor 500 (S&P 500) list, which index tracks the stock
performance of 500 large companies listed on exchanges in the United States. Each node of
the network represents the time series of a stock. Specifically, we look at a three-year period
of January 3, 2017 to December 30, 2019. The main reason for choosing a three-year period
instead of a longer time horizon is that the underlying network structure may change when
the time horizon expands due to various economic factors. For each stock in the S&P 500
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The empirical sizes of both forms of SIMPLE-RC test generally
controlled at the nominal level of α = 0.05 across different model
settings (in line with our theoretical results)

The power of SIMPLE-RC test generally enhances as the
distance between the two subgroups increases and the signal
strength becomes stronger

A larger value of m can boost the power of group network
inference with SIMPLE-RC under weaker signals
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An interesting phenomenon that a lower value of parameter K0
may be needed to alleviate the practical issue of rather weak
signals

In contrast, the choice of K0 as the true value of K = 5 can
render the sizes much inflated at the presence of weak signals

More comprehensive numerical studies on group network
inference (as well as a financial application) investigated in the
paper (similar empirical findings)
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Conclusions

Suggested a tool for group network inference with precise
p-values on testing whether two groups of nodes share similar
membership profiles

Generally applicable to networks with or without overlapping
communities and degree heterogeneity

Established simple-to-use asymptotic null distributions and
power analysis empowered by our new theory for random
matrices with weak spikes

Revealed an interesting phenomenon of eigen-selection for valid
network inference
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